
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGNING FAST GOLAY ENCODER/DECODER IN XILINX
XACT WITH MENTOR GRAPHICS CAD INTERFACE

by
tmo^ur

Mehmet Sari

March 1997

Thesis Advisor:
Second Reader:

Chin Hwa Lee
Todd Weatherford

Approved for public release; distribution is unlimited.

19971125 Oil

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions tor reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE DESIGNING FAST GOLAY ENCODER/DECODER
IN XILINX XACT WITH MENTOR GRAPHICS CAD INTERFACE

6. AUTHOR(S) Sary, Mehmet

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The programmable logic array is one of the most fascinating and fast developing areas of
technology. Field programmable gate arrays are becoming prevalent in design as the density of the gate
arrays goes up. In this thesis study, a fast encoding/decoding algorithm, Extended Golay Coding, is
implemented in Xilinx XC4000 family programmable gate array (FPGA) architecture. The encoder/decoder
is designed using the Xilinx XACT tool with the Mentor Graphics schematic capture Design Architect (DA)
and Quicksimll simulation interfaces. With the static RAM bits onboard the new Xilinx FPGAs, the
architecture is more powerful, and it is relatively easy to upgrade the old design based on the needs of the
users. In this thesis, fast encoder/decoder is implemented with transmission word redundancy and
interleaving. This is based on the data link layer description of the Milstd 181-144A. The FPGA static RAM
bits are used for the encode and decode ROM of the algorithm that makes the coder faster. Modular
approach and design hierarchy made design tasks easier and upgradable in this study. The timing
simulations of some design modules will be presented. Due to the complexity of the circuits, it is found that
the design has to be migrated to a higher density chip than XC4003 used in the simulations.

14. SUBJECT TERMS Spinning Sphere, Rotationally Symmetric Flow, Spectral
Methods

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES 103

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

DESIGNING FAST GOLAY ENCODER/DECODER IN XILINX XACT
WITH MENTOR GRAPHICS CAD INTERFACE

Mehmet San
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1997

Author:

Approved by:

Herschel H. Loomis, Jr., Chaijman
Department of Electrical and Computer Engineering

in

XV

ABSTRACT

The programmable logic array is one of the most fascinating and fast

developing areas of technology. Field programmable gate arrays are becoming

prevalent in design as the density of the gate arrays goes up. In this thesis

study, a fast encoding/decoding algorithm, Extended Golay Coding, is

implemented in Xilinx XC4000 family programmable gate array (FPGA)

architecture. The encoder/decoder is designed using the Xilinx XACT tool with

the Mentor Graphics schematic capture Design Architect (DA) and Quicksimll

simulation interfaces. With the static RAM bits onboard the new Xilinx FPGAs,

the architecture is more powerful, and it is relatively easy to upgrade the old

design based on the needs of the users. In this thesis, fast encoder/decoder is

implemented with transmission word redundancy and interleaving. This is based

on the data link layer description of the Milstd 181-144A. The FPGA static RAM

bits are used for the encode and decode ROM of the algorithm that makes the

coder faster. Modular approach and design hierarchy made design tasks easier

and upgradable in this study. The timing simulations of some design modules

will be presented. Due to the complexity of the circuits, it is found that the design

has to be migrated to a higher density chip than XC4003 used in the simulations.

VI

TABLE OF CONTENTS

i. INTRODUCTION 1

II. ENCODING/DECODING AND EXTENDED GOLAY CODE 3

A. FECINMILSTD188-141A 4

B. THE GOLAY CODE 5

C. INTERLEAVING AND DEINTERLEAVING 10

D. REDUNDANT WORDS 12

III. DESIGNING A FAST GOLAY ENCODER / DECODER 13

A MODULAR DESIGN APPROACH 13

B. GENERAL OVERVIEW OF THE DESIGN 14

1. Top Level Layer 14

a. Introduction 14

b. Getting Into MGC Designs 17

2. Descriptions of the Design Modules 17

a. NEWTEST_YEN 17

(1) ENCODE_IN_WMAT 17

(2) 12BIT_SHIFTREG1 19

(3) REGFIRST_WEN1 19

(4) REG_NEWSECOND1 20

b. DECODE_STAGE_LAST2 21

(1) VOTER6 22

(2) GOLAY_MAJ_WORD_A and

GOLAY_MAJ_WORD_B 23

(3) MAJ_WORD_A_TO_ENC and

MAJ_WORD_B_TO_ENC 23

(4) REG_FORMAJ_WORD 24

(5). XOR2S_NEW3 24

vii

c. RAM_BITS_NEW1 25

IV. SIMULATION RESULTS 27

A. MGC DESIGN ARCHITECT 27

B. SIMULATIONS OF THE DESIGN MODULES 28

1. NEWTEST_YEN Simulation 28

2. DECODE_STAGE_LAST2 Simulation 33

3. RAM_BITS_NEW1 Simulation 36

V. XILINX FIELD PROGRAMMABLE GATE ARRAYS 41

A. XILINX LOGICAL CELL ARRAYS 44

B. XILINX FAMILY ARCHITECTURE 45

1. Configurable Logic Blocks 45

2. Abundant Routing Resources 51

3. On-Chip Memory 51

4. Input/Output Blocks 52

5. Programmable Interconnect 54

6. Taking Advantage of Reconfiguration 55

7. The Xilinx Development System 56

C. CONCLUSION 56

VI. CONCLUSION AND RECOMMENDATIONS 59

APPENDIX A. CIRCUIT SCHEMATICS 61

APPENDIX B. SIMULATION SCHEMATICS 81

LIST OF REFERENCES 91

INITIAL DISTRIBUTION LIST 93

VIII

I. INTRODUCTION

The effective performance of a station, while communicating over adverse

RF channels, relies on the combined use of error correction, interleaving and

redundancy. These functions shall be performed within the transmit encoder and

receive decoder. By encoding and decoding redundant bits, it is possible to

correct bit errors without asking the source to retransmit. This provides reliable

transmission in a noisy or heavily interferenced channel. The bit errors at the

receiving end are recovered by forward error correcting (FEC) codes without

requiring a second channel to ask for retransmit (like in most error correcting

schemes using automatic repeat request - ARQ [Snelgrove,1994]). Block codes

or convolutional codes are used where retransmission of data is impractical or

impossible, such as in space probes or in broadcast satellites that transmit to

multiple receivers simultaneously [Stallings, 1994].

In this thesis study, the implementation of the Fast Golay

encoder/decoder is done on schematic entries. The design can be exported into

a Programmable Logic Device. Functional, and timing simulations of the design

will be explained in this thesis.

The main objective of this thesis is to design a reliable encoder/decoder

that can be used in a noisy or heavily interfered environment. The functionality

of the algorithm is explained in Chapter II. The designs in schematics are

explained in Chapter III. In Chapter IV, the stimulus inputs and simulation results

1

of the schematic sheets are discussed. The controller part is to be designed

according to these simulations results in a later study. The Xilinx Logical Cell

Array (LCA) technology is mentioned in Chapter V. The conclusion and

recommendations are given in the Chapter VI of this thesis.

II. ENCODING/DECODING AND EXTENDED GOLAY CODE

This chapter explains the basics of encoding/decoding algorithms, the

value of using the extended Golay Code, and how the algorithm works.

The demand for efficient and reliable digital data communication has

been increased by the emergence of large scale and high speed data networks

in the military, governmental, and private sectors. A merging of communications

and computer technology in this type of systems require the error correcting

algorithms. They are essential to provide reliable transmission of data.

[Snelgrove, 1994].

A typical transmission system may be represented by the block diagram in

Figure 2.1 [Lin and Castello, 1983]. The information source can be either a

person or a machine, e.g. digital computer. The source output can be either a

continuous waveform or a sequence of discrete symbols. The source encoder

transforms source output into a sequence of binary digits (bits), called the

information sequence u in Figure 2.1. In the case of a continuous source, this

involves analog-to-digital (A\D) conversion. The source encoder helps to

represent a source output with minimized number of bits per unit time. Another

requirement for source encoder is the ability to reconstruct signal from

information sequence u without ambiguity.

The channel encoder transforms the message sequence u into a discrete

encoded sequence x in Figure 2.1, called a code word. The modulator changes

X

—^
V

-A
—t/

y

/

MODULATOR
(WRITING

UNIT)

i INFORMATION ; \
SOURCE [^ N

1 ! v\
\ ; !

SOURCE
ENCODER

u

—' \

—]/

CHANNEL
ENCODER

1
J L

NOISE
CHANNEL

(STORAGE
MEDIUM)

\7
SOURCE

DECODER

u'

CHANNEL
DECODER

DEMODULATOR
(READING UNIT) DESTINATION

V"|
!/L-

Figure 2.1. Block Diagram of a Typical Data Transmission or Storage System.

each output symbol of the channel encoder into a waveform of duration T

seconds suitable for transmission. This waveform enters the channel and is

corrupted by noise. The demodulator processes each received waveform of

duration T and produces an output sequence y. The channel decoder transforms

the received sequence y (shown below in Figure 2.1) corresponding to the

encoded sequence x, into a binary sequence u. The source decoder then

transforms the estimated sequence u into an estimate of the source output and

delivers the estimate to the destination [Lin/Cas., 1983].

A. FEC IN MILSTD 188 -141A

Milstd 188-141A is a high frequency (HF) military communication

standard. The Forward Error Correcting (FEC) in this standard is the subject of

study in this thesis given in this chapter. This standard consists of Automatic

Link Establishment (ALE) and FEC sublayers in the Data Link Layer of the seven

layer OSI model shown in Figure 2.2. This thesis involves only the Golay Code,

interleave, and redundancy of the standard.

TRANSMIT RECEIVE

ALE i
SUBLAYER!

(ALE WORD) WORD SYNCH

SEVEN LAYER
OSI MODEL

PROTECTION [
SUBLAYER:

FEC
SUBLAYER

(BIT PATTERN)

GOLAY ENCODER

INTERLEAVE

REDUNDANCY

PATTERN SYNCH

GOLAY DECODER

DEINTERLEAVE

sS^
MODULATOR

TRANSMITTER

J§^

DEMODULATOR

APPLICATION
! LAYER

PRESENTATION
LAYER

! SESSION
i LAYER

TRANSPORT
LAYER

NETWORK
LAYER

DATA LINK
LAYER

PHYSICAL
LAYER

Figure 2.2. Milstd 188-141A FEC in OSI Model.

B. THE GOLAY CODE

The Golay code is a binary linear block (23, 12) code with minimum

Hamming distance = 7 [Lin and Castello, 63 and Proakis, 1989, 446]. The (23,

12) Golay code is the only known multiple-error-correcting binary code which is

capable of correcting any combination of three or less random errors in a block

of 23 digits [Lin,Castello, 1983]. The extended Golay code is obtained by adding

an overall parity bit to the (23, 12) code which results in a binary linear block

(24, 12) code with minimum Hamming distance = 8.

The (23 ,12) Golay code is generated either by

g1(x)=1+x2+x4+x5 + x6+x10+x11 (2.1)

or by

g2(x) = 1+x+x5+x6 + x7+x9+x11 (2.2)

Both gi(x) and g2(x) are factors of x23 + 1 and x23 +1 = (1+ x)*gi(x)*g2(x)

[Lin and Castello, 135]. The (24, 12, 3) Golay FEC (Forward Error Correcting)

code used in this study is derived from Equation 2.2 by adding an even parity bit

for each row's 23 elements to the end of the row in the generator matrix, G,

derived from g2(x). The generator matrix, G, contains an identity matrix, l12, and a

parity matrix, P, as shown in Figure 2.3.

100 000 000 000

010 000 000 000

001 000 000 000

000 100 000 000

000 010 000 000

000 001 000 000

000 000 100 000

000 000 010 000

000 000 001 000

000 000 000 100

000 000 000 010

000 000 000 001

101 011 100 011

111 1 10 010 010

110 100 101 011

110 001 110 110

110 011 011 001

011 001 101 101

001 100 110 111

101 101 111 000

010 110 111 100

001 011 011 110

101 110 001 101

010 111 000 111

Figure 2.3. Generator Matrix for (24, 12) Extended Golay Code.
6

Encoding shail use the fundamental formula:

x = u * G (2.3)

where the code word x (1x24 matrix) shall be derived from the message word u

(1x12 matrix) and the (12x24) generator matrix G, and " * " is matrix

multiplication using modulo 2 addition. As seen in Figure 2.4, encoding is

performed by using the encoder circuitry to output Golay check bits dG12

and data word bits in a sequence. This will be repeated three times to add word

redundancy at the physical level of the communication link to increase reliability

of the received word after a majority voting.

12 INPUTS DATA BITS
W, W.W,...W„W,.

ENCODE ROM ADDRESS

12 GOLAY CHECK BITS
"G"

GOLAY ENCODE ROM

4KX12BITS

w,w2 w12

ENCODE ROM
DATA OUT Gi -Gi2

Wi W2 W3 W„ W12 G, G2 G3 G,, G1:

24 OUTPUT FEC BITS
TRANSMITTED

Figure 2.4. Golay FEC Encoding Example.

Decoding will implement the following equation:

s = y_ * HT

where HT : 24x12 matrix

y : 1x24 matrix

(2.4)

7

s : 1x12 matrix,

and HT is the transpose of a parity check matrix H as shown in Figure 2.5, PT is

the transpose of the same submatrix P in generator matrix G.

P
T

111 110 010 010

011 111001001

110 001 110 110

0 11 000 111 011

110 010 001 111

100 111 010 101

101 101 111 000

010 110 111 100

001 011 011 110

000 101 101111

111 100 100 101

101 011 100 011

12

100 000 000 000

010 000 000 000

001 000 000 000

000 100 000 000

000 010 000 000

000 001 000 000

000 000 100 000

000 000 010 000

000 000 001 000

000 000 000 100

000 000 000 010

000 000 000 001

Figure 2.5. Parity Check Matrix for (24, 12) Extended Golay Code.

y_= x + e is the received vector which is the modulo-2 sum of the code

word x and an error vector e in the channel s in Equation 2.4 is a vector of "n-k"

bits called the syndrome. Each correctable error vector e results in a unique

vector s. The syndrome vector s can be computed according to the Equation 2.4,

and used to index a look-up table of the corresponding error vector e, which is

then added modulo-2 to y_ to yield the original code word x as shown in Figure

2.6.

24 INPUT FEC BITS RECEIVED (WITH ERRORS)

RECEIVED W, W,2

(PLUS ERRORS)

RECEIVED G,...Q2

(PLUS ERRORS)

W, W2 W3 W„ W12 6,6, 63 G„ G1:

SAME GOLAY
ENCODE ROM

SAME
4K X 12 BITS

6 62
(PLUS ERRORS)

12 BIT /
"EXCLUSIVE OR"

60LAY DECODE ROM
!

]~] \ 4K X 12 BITS

DATA BITS ERROR
^ PATTERN TO CORRECT

"s" SYNDROME BITS USED AS
ADDRESS POINTER BASED ON

"6" ERROR PATTERN

wlw2w3....w11w12
CORRECTED DATA BITS "W"

Figure 2.6. Golay FEC Decoding Example.

Flags are set according to the number of errors being corrected. If s is not

equal to zero and e contains more ones than three bit errors, a detected error is

indicated and appropriate flag is set.

C. INTERLEAVING AND DEINTERLEAVING

The Milstd 188-141A basic word has 24 bits, and it requires two Golay

encoder section A and section B to do the work. The basic word bits Win! (MSB)

through Win24 (LSB) and resultant Golay FEC bits G, through G24 (with G13

through G24 inverted) shall be interleaved following the pattern in Figure 2.7

before transmission.

CODER A

GOLAY CHECK
BITS INVERTED
FROM NORMAL

AFTER
ENCODING

LAST BITS'
49TH STIFF RIT: G„

GE

G*
G*
G„
G„
G„
G,»
G»
G„
G„
Go
W WR24
W= WR23
Wa WR22
W„ WR21
W WR20
W» WR19
W„ WR18
W„ WR17
W„ WR16
W„ WR15
Wu WR14
W» WR13

CHECK BITS
REINVERTED
TO NORMAL

BEFORE
DECODING

DECODER B

WR24
\NSWR23
^OO1 WR22
\sX WR21

\\>WR20
AV> WR19
\NXWR18

\DECODER A

GOUY ENCODING
TERLEAV1NG WORDS

(49 BITS)

GK -
G„ -
GTO

I: :
G.
G.
Gs -
G. -
G, ■
G, -
G,
W„ WR12
W„ WR11
W,„ WR10
W, WR9
W, WR8
W, WR7
W„ WR6
W, WR5
W, WR4
W, WR3
W, WR2
W, WR1

DEINTERLEAXflNG

WR12
WR11
WR10
WR9
WR8
WR7
WR6
WR5
WR4
WR3
WR2
WR1

/OUTPUT
BASIC
WORD

(24 BITS)

GOLAY DECODING

Figure 2.7. Word Bit Coding/Decoding, Interleaving/Deinterleaving.

10

There are forty eight interleaved bits, and the 49th bit is a stuff bit

(value=0) during transmission. They shall constitute a transmitted word and be

transmitted A1, B1, A2, B2, ..., A24, B24, S49 using a 16-1/3 symbols (tones)

per word time (Tw). In order to lessen the effects of the channel noise causing

information data bits loss all from one word, interleaving in this manner is

employed. At the receiver, after 2/3 majority voting in Figure 2.8, the 48 received

bits of the majority word (including the remaining errors) shall be deinterleaved

as shown in Figure 2.6. The Golay FEC decoder will then produce a correct (ed)

24 bit basic word (or an uncorrectable error flag). The 49th stuff bit (S49) is

ignored.

L RFDIINDANT "WORD M1 J. REDUNDANT "WORD M+V J

WORD
(BIT) FLO

BIT ORIENTED 2/3
MAJORITY VOTE

DECODER

^L

T
NOTE : THE USE OF 2/3 VOTING REQUIRES EACH

MAJORITY WORD M TO BE TRANSMITTED
AT LEAST THREE ADJACENT TIMES

WORD ORIENTED
DEINTERLEAVING AND DECODING

Figure 2.8. Bit and Word Majority Voting Before Decoding.

11

D. REDUNDANT WORDS

Each of the transmitted 49-bit (or 16-1/3 symbol) word in the Tw time shall

be redundant (times 3) to reduce the effects of fading, interference and noise. At

bit time interval (approximately Tw/49), the receiver shall examine the present bit

and the past bit stream and perform a 2/3 majority vote, on a bit-by-bit basis,

over a span of three words. The resultant 48 most recent majority bits (excluding

the 49th bit which is the stuff bit) constitute the latest majority word and shall be

delivered to the deinterleaver and FEC decoder (Figure 2.8). In addition, the

number of unanimous votes of the 48 possible votes associated with the majority

word can be temporarily retained for use.

In this thesis the main focus is on the design and simulation of various

modules that will accomplished the operation discussed in this chapter.

12

III. DESIGNING A FAST GOLAY ENCODER / DECODER

In this chapter, the implementation of the fast Golay decoder/encoder is

explained. The implementation overview, and details are given to help the

design of a controller in a future study.

A. MODULAR DESIGN APPROACH

The modular approach allows a designer to create small pieces of the

whole design and debug them relatively easier than the bigger complex

designs. Making designs in short time period is important in today's fast

developing area of technology. It is advantageous to put the pieces together

creating the whole design as layers of encapsulation and modules. This

approach develops a hierarchy of layers from the topmost one showing the

simple inputs and outputs of the whole system to the lowest one showing the

gate level construction of each component. As we go down to lower layers, we

get into those encapsulated design modules and involve more the hardware

details of each module. In this way, the design is partitioned into layers of

hierarchy and modules independent from each other. This allows them to be

individually simulated and debugged.

13

B. GENERAL OVERVIEW OF THE DESIGN

1. Top Level Layer

a. Introduction

The top layer consists of the input signal: serial data input,

encoder/decoder select, system clock, and clear signals and encode/decode

ROM matrices. The output signals are encoded word transmission or decoded-

and-recovered data word serial output. There are status signals representing the

valid times of the signal transmission beginning and ending.

The functional overview of the design is shown in Figure 3.1. The

encode, and decode ROM matrices in the algorithm are entered into the static

RAM cells of the FPGA initially. The encode control signals and decode control

signals are generated alongside serial input according to the encoder/decoder

select input of the controller unit in Figure 3.1.

SERIAL DATA
INPUT

ENCODE/DECODE
ROM INPUT O

CONTROL
SIGNALS

ENCODER/DECODER
SELECT

^

MAIN_

CIRCUIT ENCODER/DECODER
SERIAL OUTPUT

CONTROLLER
>

ENCODER/DECODER
BEGIN & END SIGNALS

Figure 3.1. Functional Diagram of the Golay Encoder/Decoder.

14

The controller in Figure 3.1 will generate the status signals showing the

beginning, and end of encode and decode word transmissions. The design

schematic (MAIN_CIRCUIT) will generate the serial encoder/decoder output

according to control signals, and serial bits coming in. The work presented in

this thesis is focused on the MAIN_CIRCUIT. The design of CONTROLLER is

not included.

The block diagram of the MAIN_CIRCUIT of the encoder/decoder

is shown in Figure 3.2. This represents the interfaces among modules which

perform the two functions shown in Figure 2.4 and Figure 2.6.

T0_MMW0R0B.X0R(1:12)

DEC0DE_RAMJN[11:

SYICKJS(13:24)

ENCODE RAW INTO:111

SERIAL« >

H

SYSTEM CLK
NEWTEST_YEN ! j DEC0DE_STAGE_LAST2

J1-
MAJORITY BUSES(3x49)

IBUSABUSB.BUS.q

->TfWBMT.ENCODE_OUT

A n
XOR2SNEW2

VOTED WORD|13:24)

/
DECODEDJ\0®pUT(13:24)

DED0DED_W0RD_0Ur(1:12)

24Brr PAR TO SER

TO MAJW0R0A(1:12) " /

H* TTWEMTT-DECODE OUT

RAM BITS NEW!

H
SYHLBUSttttK

V0TED_W0RD(1:12)

Figure 3.2 Block Diagram of the Golay Encoder/Decoder.

15

NEWTEST_YEN, the first module on the left of the Figure 3.2, has

two functions. The first one is that the entire encoding cycle is finished in this

module. The second one is that it has the three 49-bit registers that are used

both for encoding, and decoding cycles as explained in details later in this

chapter. The encode ROM matrix in this module is looked up by serial input

message bits. The Golay check bits are generated according to the algorithm

shown in Figure 2.4.

DECODE_STAGE_LAST2 is the second module on the left in

Figure 3.2. One of its two basic functions is to take the three buses with received

redundant message words from the first module NEWTEST_YEN to make a 2/3

majority voting explained in Chapter II. Its other function is to generate syndrome

bits shown in Figure 2.6, and pass it to the RAM_BITS_NEW1 modules shown in

Figure A.1. Meanwhile this module is to keep the two voted message words until

they are XORed with error correcting data bits to give the corrected data word as

shown in Figure 2.6.

There are two RAM_BITS_NEW1 modules. One is at the top, and

the other is at the bottom. RAM_B!TS_NEW1 module has the parity check matrix

or decode ROM. This module takes the syndrome bits, and generates the "data

bits error pattern to correct" as shown in Figure 2.6.

As shown in Figure 3.2, two identical stages are dealing with the

two halves of the 12 bit portions in the same manner. XOR2S_NEW2 module

takes both the received message word and "data bits error pattern bits"

16

TO_MAJWORDA_XOR or TO_MAJWORDB_XOR. It also corrects the received

message word VOTED_WORD by XORing both inputs.

The 24BIT_PAR_TO_SER module multiplexes both corrected

message words, and puts them on a serial output line.

b. Getting Into MGC Designs

The top level module Figure A.1 shows the detailed inputs, and

outputs in the system. The controller generates the control signals needed for

the modules. These signals will be asserted according to the programmed

stimulus in Quicksimll during simulations.

The lower layer of MAIN_CIRCUIT in the hierarchy shows the

modules and the interfaces among them as shown in Figure A.2. Detailed

descriptions of each module will be given in this chapter.

2. Descriptions of the Design Modules

a. NEWTEST_YEN

This module has two basic functions. If the cycle is an encoding

cycle, it uses serial input bits to look up the Generator matrix (G) to generate

Golay check bits. The upper golay check bits are inverted before interleaving.

The two Golay words and two message words are interleaved as shown in

Figure A.3. This provides reliable transmission and receive of messages without

being much affected by environmental noise and electromagnetic interference.

(1) ENCODE_IN_WMAT. This is the third module from

the top at the left. This module's basic function is using serial input bits to look

17

up generator matrix for check bits. The encode and decode ROMs' values are

entered into static RAM bits (ram 16x8 and ram 16x4 library parts) as shown in

Figure A.4. A 4-bit counter is used to begin counting when reset. The count will

be ANDed with the serial input. This will be used to look up Generator Matrix as

the row select. Shift enable signal from controller will be asserted for twelve

clocks. This lasts until all the message word bits to be ANDed with the count are

shifted. The serial input bits will be multiplexed into the two encoders while they

are also shifted into two 12 bit shift registers(12BIT_SHIFTREG1s on the left of

Figure A.3) to keep the message words to be interleaved later. The contents of

the shift registers and two Golay check words will be interleaved into the module

REGFIRST_WEN1, the third module from right as shown in Figure A.3. The

encode ROM look-up will be performed by the "count value" corresponding to

ones in the message word bit sequence. The corresponding row in encode ROM

will be XORed with the next one that is looked up. For example, if the eighth

element of the message word is one, it will pass the count value eight, and it will

look up the eighth row in the generator matrix. This row will be XORed with the

present XOR module inputs. If the serial message input bit is "1", it passes the

counter's count, or if it is "0", it passes "0" to look up the generator matrix. The

passed count zero value will look up the first row of the matrix which consists of

all zero values in its 12 bit positions and send twelve zero values into the

XORing module (RAM_XOR_TO_LAST1) shown in Figure A.4. The zero bit

values in the message word will not affect the result.

18

The 12FDC_WES and the 5FDC_WES are the same

schematics except that in 12FDC_WES, there are 12 D flip-flops instead of 5 in

5FDCJ/VES. They are used as parallel shifter of the incoming bits with an

enable signal as shown in Figure A.4 and Figure A.7. These two help pipeline

the stages, and eliminate the possible invalid output transition into the XORing

module (RAM_XOR_TO_LAST1).

The RAM_XOR_TO_LAST1 module gets the rows looked up

in the encode ROM, and uses the serial message bits as enable to take the

looked up row into the XORing module as shown in Figure A.6. The ANDing of

serial input and inverted WE (write enable signal to write the encode or decode

ROM into the static memory cells) provides this enable signal.

(2). 12BIT_SHIFTREG1. The 12BIT_SHIFTREG1 module

shown in Figure A.5 is used to buffer the input message word bits and keep

them as they go into the ENCODE_IN_WMAT module simultaneously. When the

message bits are all taken into ENCODE_IN_WMAT module, this module will

have all the twelve bits of the message word to be interleaved later.

(3). REGFIRST_WEN1. The two module outputs

mentioned above are interleaved and shifted into the 49 bit register by asserting

the enable signal FROM_ENCS from the controller in the encoding cycle as

shown in Figure A.3, and Figure A.8. After these bits are interleaved and shifted

into this module, the TR_ENC_OUT (transmit encoded word serial out signal

19

from the controller) is asserted high for 3x49 clock cycles to transmit the

interleaved 49 bits.

In the decoding cycle, SERCONT_SIG_0 and

SERCONT_SIG_1 (control signals for multiplexing serial input both in the

decode and the encode cycles) are both asserted high by the controller, and the

serial input is passed into REGFIRST_WEN1's 49th bit. The serial input bits to

be decoded are shifted into this module, and later into the next two modules (49

bit REG_NEWSECOND1 register modules) in a sequential order. The 3x49 bits

are taken into three modules to be loaded on three buses for the majority vote.

In the encoding cycle, the interleaved 49 bits are transmitted

to physical medium by asserting TR_EN1 signal high as they are shifted down

the first 49-bit register module (REGFIRST_WEN1, the third module from the

right in Figure A3). TR_EN2 control signal is asserted high to transmit the bits

coming from the REGFIRST_WEN1 module into module REG_NEWSECOND1

(the second one from the right in Figure A.3). Finally TR_EN3 is asserted high to

transmit the bits coming from the first REG_NEWSECOND1 module (the second

module from the right in Figure A.3) into the second module

REG_NEWSECOND1 (the first one from the right in Figure A3).

(4). REG_NEWSECOND1. This module is used in two

adjacent places at right as shown in Figure A.3. This module is also used in both

the decoding and the encoding cycles as mentioned early in this chapter.

20

In the encoding cycle, after the interleaving, the module

REGFIRST_WEN1's content is shifted into the first, and then into the second

REG_NEWSECOND1 modules as shown in Figure A.3. While the bits are

shifted into the next bit position, they are transmitted by the output signal

"TR_SER_ENCOUT" as shown in Figure A.3.

In the decoding cycle, the control signals

SERCONT_SIG_0, and SERCONT_SIG_1 from controller will be asserted to

multiplex the serial input into the REGFIRST_WEN1 module. And they are

shifted into the second and the third modules (two REGNEW_SECOND1

modules as shown in Figure A.3) until all the 3x49 bits are taken into three of the

register sets.

A majority vote done MAJ_VOTE_DONE control signal will

be asserted to clear the registers after the majority vote of three buses as shown

in Figure A.3. The encoded word is transmitted to the output signal

TR_SER_ENCOUT in Figure A.3.

b. DECODE_STAGE_LAST2

The DECODE_STAGE_LAST2 module shown in Figure A. 10

performs the majority vote of the three incoming 49-bit buses from the registers

explained in NEWTEST_YEN module. When all the buses are ready, the

majority vote enable signal, MAJ_VOTE_EN from controller, is asserted high to

make 2/3 majority vote of the bus values. After the vote, the voted 49bits are

deinterleaved as shown in Figure A. 10. The 2x12 bit message words and 2x12

21

bit Golay check words are obtained after the deinterleaving. The upper Golay

check bits shown in Figure A. 10 are reinverted before being taken into the

upper XOR2S_NEW1 module at the right shown in the same figure. The control

signal SHIFTAFMAJ_EN is asserted high after the vote. It shifts deinterleaved

values into the golay (GOLAY_MAJ_WORD_A, and GOLAY_MAJ_WORD_B)

and voted message word (GOLAY_MAJWORD_A, and GOLAY_MAJWORD_B)

modules shown in the Figure A. 10. SHIFT_INTO_ENCS (shift voted message

words into the encoders control signal) shifts "the received message word with

errors" into ENCODE_IN_WMAT module to look up the encode ROM. This

yields the check bits to compare with the received Golay check bits to find out if

any received message bit is in error. The ENCODING_DONE signal will be

asserted high when all the received message word is shifted, and XORed with

the received Golay bits. The REGCLR_ASYND_XOR (register clear) signal will

be asserted high after the voted message word's XORing with syndrome bits as

shown in Figure A.2.

(1). VOTER6. This module performs a majority vote after

having all three incoming 49-bit buses (three redundant received 49 bits to be

decoded) are ready. A majority vote enable signal from controller is asserted

high when all buses are ready (the MAJ_VOTE_EN signal in Figure A.11). The

majority vote algorithm is 2/3 voting. If the two or three bits are low (or zeros),

then the vote is zero, if two or three bits are high (or ones), then the vote is one.

22

Suppose the incoming three bit signal names are A, B, and C, then the vote is

implemented by MAJ_ VOTE = (AxB)x(AxC)x(BxC) as shown in Figure A.11.

(2). GOLAY_MAJ_WORD_A and GOLAY_MAJ_WORD_B.

These components have the values of the received check bits after majority vote

and deinterleaving as shown in Figure A. 10. The difference between these two

modules is that the one above (GOLAY_MAJ_WORD_B) has all the incoming

bits inverted as explained in Chapter II (Figure 2.7). The input/output bits are

named according to Figure 2.7.

The deinterleaved bits coming into these modules are

shifted by SHIFTAFMAJ_EN signal by asserting MAJ_VOTE_EN input pad of

the each module shown in Figures A. 10 and A. 12. The bit values of each

received message word will be kept by asserting MAJ_VOTE_EN low to allow

the Q outputs of the D flip-flops circulate to keep the value they have until they

are cleared as shown in Figure A. 12.

(3). MAJ_WORD_A_TO_ENC and MAJ_WORD_B_TO_ENC.

The function of these modules is to shift the voted message word to look up the

encode ROM to find the check bits. These check bits are XORed with the

received Golay check bits to give the syndrome bits shown in the Figure A. 10.

The interleaved bits coming into modules MAJ_WORD_B_TO_ENC, and

MAJ_WORD_A_TO_ENC are shifted serially into higher and lower encoder

modules (ENCODE_IN_WMAT modules shown as two modules one on top of

the other at the second column from the right in Figure A.10). SHIFTIN_ENCA

23

and SHIFTIN_ENCB input signals are asserted h? for 12 clock period for each

module to shift all twelve-bit voted message woro nto encoders. After all the

message bits are shifted, the SHIFTMEN control signal shown in Figure A.10 will

be asserted low to end the shift. As long as the SHIFTMEN signal is high, it won't

let the message bits (taken once into these modules) get into shifted sequence

as shown in Figure A. 13. This is taken care of by "and2b1" (two input AND gate

with one input inverted) gates by having the SHIFT_EN signal coming into their

inverted inputs. The modules are cleared by the ENCS_DONE (encode

operation is done) signal.

(4). REG_FORMAJ_WORD. The REG_FORMAJ_WORD

module keeps the received message word until the syndrome bits look up the

decode ROM to give the "data bits error pattern to correct" shown in Figure2.6.

After this error correcting pattern is obtained, it is used to correct the received

message word as explained later in this chapter. This module is the same as the

GOI_AY_MAJWORD_A module except the naming of the input and output

signals.

(5). XOR2S_NEW3. This module performs modulo two

addition of each row of the encode ROM looked up by the received message

word bits. This is done by XORing the columns of each looked up row in encode

ROM as they come into XOR gates shown in Figure A.15. The

GEN_SYNDROME control signal will shift the final value of the XORs' outputs

24

into the D flip-flops to give the "syndrome bits" that are explained later in this

chapter.

c. RAM_BITS_NEW1

This module looks similar to ENCODE_IN_WMAT module. The

difference is that, in this module there is an additional sub module at the left

(SYND_LAST_CIR). The RAM bits in this module are programmed to keep

"decode ROM" values shown in Table 4.6 instead of "encode ROM" shown in

Table 4.1. This module takes the syndrome bits generated by the module

DECODE_STAGE_l_AST2 shown in Figure A. 16. By using the syndrome bits to

look up the decode ROM "Data Bits Error Pattern to Correct" in Figure 2.6 is

obtained. The SYND_LAST_CIR in Figure A.17 is the same module as the

MAJ_WORD_B_TO_ENC in Figure A. 13, except the naming of the input and

output signals. Rest of the modules are explained early in this chapter.

In this chapter all modules implementing the MAIN_CIRCUIT were

constructed. Because the functionality of this modules are well defined,

simulation of these modules will be explained in the following chapter.

25

26

IV. SIMULATION RESULTS

In this chapter, first mentor graphics schematic capture tool Design

Architect and logic simulation tool Quicksimll are discussed. Simulation inputs

and outputs after running the Quicksimll simulations for several modules are

given as examples in discussion.

A. MGC DESIGN ARCHITECT

Mentor Graphics tools are used to assist the electronic design Process

used in this thesis. Mentor Graphics tools can provide schematic entry, design

analysis in IC/PCB layout, test and manufacturing, electronic packaging, and

document preparation [Mentor Graphics Idea Station, 1989].

A schematic entry tool consists of three main parts. The first part,

component libraries, provides files of component and their simulation models

used in schematic designs and simulations. NETED (Net Editor-Schematic

Capture) creates schematic sheets of components. And SYMED (Symbol Editor)

creates component symbols using pins, borders and design properties.

Schematic sheets are created by placing components, drawing nets, and adding

textual information. It has a variety of different library packages with many library

parts to facilitate the design. The routing capability, the gate count, and the

delay time in digital simulations provide great insight and analysis capability to

the designers.

27

In this thesis, Xilinx XC4000 library parts associated with Mentor Graphics

Design Architect are used to create the design sheets in schematic entries.

Besides the basic components, some medium scale integrated circuit

components such as counters and RAM bits (16x8 and 16x4 RAM cell-

components) provided by Xilinx 4000 family library are also used to build

modules. Specifications are explained in Xilinx, Prog. Logic Data Book,1996.

B. SIMULATIONS OF THE DESIGN MODULES

Using the Quicksimll simulations to test and debug the design sheets is

straight forward. Quicksimll gives the user the opportunity to go down the design

layers to trace and list the individual signal in details. This helps to find out how

the signal transitions occur in details in most of the debugging cases. The other

benefit of this tool is that it gives the user the capability to save the force values

simulation stimulus and the ability to be upgraded later along with the setup and

waveform save options.

1. NEWTEST_YEN Simulation

The module NEWTEST_YEN shown in Figure A.2 is the first module in the

design to be simulated. The functionality and interfaces of this module are

explained in Chapter III. Both the encoding circuit and the registers to keep the

serial input for majority vote in the decode cycle are implemented in this module.

This module performs the Golay FEC encoding shown in Figure 2.4 using the

Equation 2.3. The Generator matrix G shown in Figure 2.3 is stored into the static

RAM bits by input signals ENCODE_RAM_IN (11:0), WE, A3, A2, A1, A0. The

28

serial inputs are multiplexed by control signals SERCONT_SIG_0 and

SERCONT_SIG_1 into the encoders or into the 49 bit register sets depending on

whether it is an encode or decode cycle. The first row of the matrix is all zeros. If

the serial input is zero, it is going to encode the first row. There is no effect of

serial input zero bit value on the modulo-2 addition. There is a need in

implementing the Equation 2.4 to give the code word x (1x24 matrix). In this

equation, the two message words u (two 1x12 bits serial inputs into encoders

shown in Figure A.3) look up the rows of both the encode ROM matrices. Each

high bit in the message word encodes a corresponding row in the encode ROM.

Then these looked up rows are modulo-2 added (or XORed) to yield the two Golay

words. They are interleaved with the two message words before being transmitted.

The second row of the ENCODE_RAM_IN (input matrix HEX values for encode

ROM) shown in Table 4.1 consists of zeros since using the static RAM module

introduces additional module delay. The twelve rows of the encode ROM matrix

given in Table 4.1 are then entered. The hex values entered into the encode ROM

is based on taking the right most bit of each row of the P matrix in G shown in

Figure 2.3 as the first bit of hex values given as ENCODE_RAM_IN inputs in the

simulations. The P matrix is entered without I matrix, because the 12 bits in the

code word will exactly be the same as the message word. A 12 bit shift register

(12BIT_SHIFTREG1 in Figure A.3) will keep the serial input message bits. The

sixteen rows of the encode matrix are entered by using four address bits (AO, A1,

A2, A3). Twelve rows are needed to be addressed in the encode ROM matrices.

29

Zero bit values are entered into the first and the last two rows of the encode ROM

matrix. It is strongly advised to assert a 7/globalsetreset" signal for a fraction of a

clock period before doing the simulations on the XC4000 family FPGAs. This

helps clear the chip modules to eliminate unknown (resistive or high Z) states. The

input values of the simulation are summarized in the Table 4.1 as specified above.

CLOCK_PERIOD

(nsec.)

ENCODE_ROMJN(11:0)

(HEX.)

A3

(MSB)

A2 A1 A0

(LSB)

200 000 0 0 0 0

400 000 0 0 0 1

600 C75 0 0 1 0

800 49F 0 0 1 1

1000 D4B 0 1 0 0

1200 6E3 0 1 0 1

1400 9B3 0 1 1 0

1600 B66 0 1 1 1

1800 ECC 0 0 0

2000 1ED 0 0

2200 3DA 0 1 0

2400 7B4 0 1 1

2600 B1D 1 0 0

2800 E3A 1 0 1

3000 000 1 1 0

3200 000 1 1 1

Table 4.1. Input value s of the er »code RON H.

30

For the write period of the encode ROM (200-3400 ns), WE signal is held

high. The control signals SERCONT_SIG_0, and SERCONT_SIG_1, clear

signals, transmit enable signals, and shift enable signals shown in Figure A.3.

They are given in Table 4.2 when they are at their high states.

CONTROL SIGNAL HIGH CLOCK PERIOD (nsec.)

SERCONT_SIG_0 4000-6400

SERCONT_SIG_1 6400-8800

CLR_FINXOR_A 100-3800

CLR_FINXOR_B 100-6200

CLR_SERIN 100-150

TR_ENC_OUT 9400-39200

FROM_ENCS 9400-39200

MAJ_VOTE_DONE 100-200

TR_EN1 9800-19600

TR_EN2 19600-29400

TR_EN3 29400-39200

Table 4.2. Values of the control signals at their high clock periods.

The simulation of NEWTEST_YEN module is focused on checking the

encoding functionality. The simulation results presented in Figures B.1, B.2 and

B.3 are for checking the NEWTEST_YEN module's encoding function.

The encode ROM input signal values are traced between times 200ns

and 3400ns as shown in Figure B.1. The WE (write enable) signal is held high

as the address bits (A0, A1, A2, A3) are changed to let the encode ROM bits be

written.

31

The values entered into the encode ROM and the first 49bit register bus

(REGFIRST_WEN1) transitions' traces are shown in Figure B.2. After the

message and the Golay check bits from the two code word bits are interleaved,

they are taken into the BUS_A at time 9400ns. This 49 bit sequence is shifted

one bit position at each clock cycle into the next REG_NEWSECOND1 module.

The interleaved bit sequence is transmitted by TR_SER_ENCOUT output signal

shown in Figure B.2. When the FROM_ENCS signal is high, the encoder A and

B (ENCODE_IN_WMATs), shift register A and B (12BIT_SHIFTREG1s) values

are taken into the BUS_A as shown in Figure B.2.

There are three transmission sequence control signals TR_EN1,

TR_EN2, and TR_EN3 as shown in Figure B.3. TR_EN3 signal's being high

means that the values in the right REG_NEWSECOND1 module shown in Figure

A.3 are transmitted by the TR_SER_ENCOUT signal. TR_EN1 and TR_EN2

signals being low means that the transmission of the bit sequence in

REGFIRST_WEN1 and first REG_NEWSECOND1 modules are completed. The

BUS_C shows how the bits are shifted at each clock cycle.

SERIALJN bit values given in Table 4.3 are being asserted from time

4000ns on to the serial input of the lower ENCODE_IN_WMAT. SERIALJN bits

are then multiplexed into the serial input of the upper ENCODE_IN_WMAT

modules shown in Figure A.3 at time 6400ns and on.

32

CLOCK @ A (nsec.) SERIALJN (Bit Value) CLOCK @ B (nsec.)

4000 1 6400

4200 1 6800

4400 0 7000

4600 0 7200

4800 1 7400

5000 0 7600

5200 0 7800

5400 1 8000

5600 1 8200

5800 0 8400

6000 1 8600

6200 1 8800

Table 4.3. Serial Input Values Asserted to Encoder A and B.

The TR_SER_ENCOUT sends the last bit of the code word at time

38800ns since it gets into the 49 bit registers (first into REGFIRST_WEN1) at

time 9400ns. As a result the total transmission lasts until 9400+3x49x200 =

38800ns (three times 49 bit shift each at one clock cycle). The NEWTEST_YEN

modules behave as expected

2. DECODE_STAGE_LAST2 Simulation

In this simulation, the functionality of the majority voter (shown in Figure

A.11), deinterleaving and generation of the syndrome bits in the

DECODE_STAGE_LAST2 module shown in Figures A.2 and A.11 are checked.

33

This module represents the upper portion of the Figure 2.6. The received

sequence consists of two twenty four bits code word. Each consists of a

message and a check word. The purpose of this simulation is to make sure the

majority voting and interleaving are performed correctly. The check bits

generated from the received message word can help to find out if received

message word has bit errors. If any of the syndrome bits is one, then the

message word is in error. Message word is corrected in a way shown in Figure

2.6. The syndrome bits are used to look up the decode ROM to yield the data

bits error corrected pattern values. This pattern bits are XORed with the received

message word. This will correct the received message word. The encode ROM

and decode ROM values are entered in the same way as it is shown in Table

4.1. The row values of the matrices are the only differences in the encode and

the decode ROMs. The stimulus values of DECODE_STAGE_LAST2 module

are given in Table 4.4, where the encode ROM is the same as the one in

NEWTEST_YEN simulation.

Three 49 bit input values are asserted on each bus. They are 2/3 majority

voted in a way shown in Figure 2.8. After majority vote, the voted code word bits

are interleaved as shown in Figure 2.7. The decode procedure's first part

consists of generating syndrome bits as explained above. The three bus values

here are picked up in a random manner. Majority clear (MAJ_CLR in Figure

A.11) is asserted high before the vote to clear the voter circuit. Majority vote

enable signal is asserted when all buses are ready for the vote. When the vote

34

is done, SHIFTAFMAJEN signal is asserted to get the voted code words into

the received Golay word registers (GOLAY_MAJ_WORD_A. and GOLAY_MAJ_

WORD_B) and received message word registers. The received message word is

shifted into the encoder module (ENCODEJN WMAT) by asserting the

SHIFT_INTO_ENCS signal for 12 clock cycles. At the end of 12 clock cycles, the

intermediate check bits will be ready to be XORed with received Golay check

bits. Syndrome bits will be obtained by asserting the GEN_SYNDROME control

signal as an enable for XORing mentioned above. The syndrome bits are used

to find the data bits error pattern for correction. These pattern bits are XORed

with the received message word to yield the corrected message word. The

REG_CLR_ASYND signal is asserted high after the correction.

SIGNAL NAME SIGNAL VALUE ASSERTED PERIOD (nsec.)

MAJ_CLR 1 100-3400

MAJ_VOTE_EN 1 3800^000

BUS_A(1:49) 1EBC98234570A 3800-4000

BUS_B(1:49) 1A234598BCDEA 3800-4000

BUS_C(1:49) 189DCA3EF5870 3800^4000

REGCLR_ASYND_XOR 100-200

ENCODING_DONE 100-200

SHIFTJNTO_ENCS 4400-6800

SHIFTAFMAJ_EN 4000-4200

CLR_SYNDROME 100-200

GEN_SYNDROME 7400-7600

Table 4.4. Simulation Input Values and Times When Different From Low Value.

35

The input values given to these three buses, and to the majority enable

signal (MAJ_VOTE_EN) are shown in Figure B.4.

As shown in Figure B.5, when the encode ROM is being written, all other

signals stay low. The ROM values in this figure are the same as those encode

ROM values used in the NEWTEST_YEN simulation.

The output values are valid at time 7600ns as shown in Figure B.6. The

24 syndrome bits generated are valid after asserting the GEN_SYNDROME

signal high between 7400 and 7600ns.

All bus values at time 7600ns are valid after the assertion of

SHIFTAFMAJ_EN (shift enable after majority vote). The received message word

stays on the VOTED_WORD bus until it is corrected by the data bit error

correcting pattern bits. Bus values shown in Table 4.4 begin with ones. These

ones are the first bits in these buses. The rest of the values are handled as HEX

values. For example, for the BUS_A value 1EBC98234570A, the first 1 is not

handled as HEX 1 (which is 0001 in 2's complement), but instead it is handled as

a single bit(the first bit in 49 bit bus value). Another important point to be taken

into consideration is the synchronization of the signals. When they have to go

through the same components at the same time, some kind of buffering should

be used to synchronize the signals to avoid invalid or unknown results.

3. RAM_BITS_NEW1 Simulation

The RAM_BITS_NEW1 module shown in Figure A. 16 takes the syndrome

bits to look up decode ROM matrix to yield data bits error pattern for correction

36

as shown in Figure 2.6. The difference between this module and the

ENCODE_IN_WMAT module is that the RAM_BITS_NEW1 has a parallel input

and serial output syndrome block. Besides, the RAM bits have the input values

of the decode ROM matrix instead of the encode ROM matrix that is used

previously in section I. The RAM_BITS_NEW1 stimulus force input values other

than decode ROM matrix are given in Table 4.5.

SIGNAL NAME

SYND XIN

SHIFT EN

CLR FINXOR

COUNT RESET

SIGNAL VALUE ASSERTED PERIOD (nsec.)

3600-3800

4000-6600

10O4200

100^000

Table 4.5. RAM_BITS_NEW1 Force Values.

The syndrome input values are in a sequence of "1 1 0 1 1 0 1 1 1 1 0 1"

as S1, S2, S3,..., S12 respectively. They are asserted in parallel between 3600

and 3800 ns. The decode ROM values used to input into the RAM bits are given

in Table 4.6.

37

CLOCK_PERIOD

(nsec.)

ENCODE_ROM_IN(11:0)

(HEX.)

A3

(MSB)

A2 A1 A0

(LSB)

200 000 0 0 0 0

400 000 0 0 0 1

600 F92 0 0 1 0

800 7C9 0 0 1 1

1000 C76 0 1 0 0

1200 63B 0 1 0 1

1400 C8F 0 1 1 0

1600 8D5 0 1 1 1

1800 B78 0 0 0

2000 5BC 0 0

2200 2DE 0 1 0

2400 16F 0 1 1

2600 F25 1 0 0

2800 AE3 1 0 1

3000 000 1 1 0

3200 000 1 1 1

Table 4.6. Input Value s of the Di »code ROI\ A.

In Figure B.7, decode ROM input values, and the other signal values

shown in Table 4.5 are traced. The input values of the decode matrix is taken

from the PT matrix of the parity check matrix H shown in Figure 2.5. The rest of

38

the signals are handled in the same way as they are handled in NEWTEST_YEN

simulation section.

The RAM_BITS_NEW1 module generates the valid results at time 6800ns

as shown in Figure B.8. The syndrome bits asserted to look up the decode ROM

proves to be the same value (579 in HEX as shown in Figure B.8) as the hand

calculated value.

In simulations, some vital experience was gained. At very early

simulations the force values for stimulus were entered bit by bit, and again and

again at each new simulation session. These took a long setup time in

simulations. Later in the simulations the hex values for "force files" are used.

These force files were saved everytime when the new force values were

entered. These were kept for upgrading after debugging of the current schematic

designs.

For the functional part of the simulation, the first thing to be considered is

to get the implemented function work properly, and produce what is expected.

Timing is not a major concern, except that you still can improve the speed by

pipelining each stage to see how fast it can get. One of the biggest problems

causing the invalid results was that the signals were being asserted

asynchronously. This problem is eliminated by using the buffers at the signal

paths. The signals coming earlier than the others will then be asserted at the

same time.

39

The other difficulty faced in the simulations was in asserting the bus

inputs. This problem is recovered by inputting the ROM matrices in a way shown

in this chapter. They (the hex values in simulations of both encoder and

decoder) are obtained by entering the ROM values given in Chapter II. Because

of some of the ripper and bus naming conventions, the inputs had to be entered

just the opposite way. That is the most significant bit value became the least

significant bit value, and vice versa. In debugging the big modules that has a

couple of modules inside, the simulation input times had to be reprogrammed for

the synchronization purposes.

The main purpose of these three simulations is to debug each module,

and find out when to assert the control signals to the modules. This will help the

design of the controller

40

V. XILINX FIELD PROGRAMMABLE GATE ARRAYS

Beginning in 1980s, industry was introduced with a new technology to

make ASIC designers more competitive. This shortens long acquired testing

time, and fabrication-dependent wait period. Using FPGAs one can implement

large digital circuits on a single chip. For Xilinx XC4000EX chips, they have up

to 125 000 gates, and for XC4062XL it has up to 72K static RAM bits on a single

chip [Xilinx, The Programmable Logic Data Book, 1996]. Along with laser

programmable chip technology, FPGA technology is among those which grows

at the fastest speed to offer industrial solutions to compete with VLSI

technologies. The biggest disadvantage with FPGAs is the overall speed

concern since the wiring and switching introduce resistive propagation delays as

compared to transistor level design. But it is managed to get up to 66 Mhz

overall speed in designs with Xilinx FPGAs. Now the FPGAs have more flip

flops, and faster switching capabilities, and special clock distribution lines that

can run through the whole chip. Faster speed designs are accomplished by

pipelining, and by up to date solution database offered to the customers on the

Internet. Field Programmable Gate Arrays provides the benefit of custom CMOS

VLSI, while avoiding the initial cost, time delay, and inherent risk of a competitor

technology, conventional masked gate array. Programmable logic devices

provide the benefits of high integration levels without the risks or expenses of

41

semi-custom and custom IC development. Here are some of the benefits of

programmable logic devices versus mask programmed gate arrays:

A. Faster design and verification: FPGAs can be designed and verified

quickly while the same process requires several weeks with gate

arrays. There are no non-recurring engineering (NRE) costs, no test

vectors to generate, and no delay while waiting for prototypes to be

manufactured. [Xilinx, Programmable Data book, 1996]

B. Design changes without penalty: Because the devices are software

configured and user-programmed, modifications are much less risky

and can be made anytime, in a matter of minutes or hours, as opposed

to weeks it would take with gate arrays. This results in significant cost

savings in design and production.

C. Shortest time-to-market: When designing with programmable logic,

time to market is measured in days or a few weeks, not months often

required when using gate arrays. A study by a marketing research firm

concluded that a six month delay in getting to market can cost a

product one-third of its lifetime potential profit. With masked

programmed gate arrays, design iterations can easily add that much

additional time, and more to a product schedule [Xilinx, Programmable

Logic Data Book, 1996]. FPGAs replaces most discrete and SSI

devices, resulting in an 80% reduction in the number of components

42

and a 75% reduction in test time since it does not require test vectors.

[Xilinx, programmable Logic Breakthrough '95,1995].

The result of experience gained with two successful FPGA family

(XC2000 ,and XC3000) helped the XC4000, XC5000, and XC6000 families to

provide a regular, flexible, programmable architecture of Configurable Logic

Blocks (CLBs) [Xilinx, Technical Data, XC4000 LCA family, 1990]. They are

interconnected by a powerful hierarchy of versatile and abundant routing

recourses, and surrounded by a perimeter of programmable I/O blocks on the

chip.

The devices are customized by loading configuration data into the internal

memory cells. The FPGAs can either actively read its configuration data out of

external serial or byte-parallel PROM (master modes), or the configuration data

can be written into the FPGA from a host (slave and peripheral modes).

The Xilinx family is supported by powerful and sophisticated software,

covering every aspect of the design: from schematic entry to simulation, to

automatic block placement and routing of the interconnects, and finally the

creation of the configuration bit stream. Since the FPGAs can be re-programmed

for unlimited number of times, they can be used in innovative designs where

hardware configuration is changed dynamically, or where hardware must be

adopted to different user applications. FPGAs are ideal for shortening the design

and development cycle, but they also offer a cost effective solution for

43

productive rates well beyond 1000 systems per month. [Xilinx, Tech. Data,

XC4000 LCA family

A. XILINX LOGICAL CELL ARRAYS

Xilinx high density user programmable gate arrays comprise three major

configurable elements: configurable logic blocks (CLBs), input/output blocks

(lOBs), and interconnections. The CLBs provide the functional elements for

constructing the user's logic. The lOBs provide the interface between the

package pins, and internal signal lines. The programmable interconnect

resources provide routing paths to connect inputs and the outputs of the CLBs

and lOBs onto the appropriate networks [Xilinx, Technical Data, XC4000 LCA

Family, 1990].

Customized configuration is established by programming internal static

memory cells that determine the logic functions and interconnections

implemented in the LCA device. XC4000 family achieves high speed through

advanced semiconductor technology (0.35 micron CMOS fabrication

technology), chip density reaches up to 125 K logic gates with system

performance of up to 66 MHz speed. It is also 100% Peripheral Component

Interconnect (PCI) compliant supporting standard ASIC design flow. Three

layers of metal is used in latest XC4000EXs, and extra feature of Select-RAM

memory in XILINX chips dramatically improves the system performance, ease-of-

use, and overall gate count. This feature allows easy distribution of high

44

performance customized single or dual port RAM functions. [Xilinx, Pro. Log.

Data Book, 4-8, 1996]

B. XILINX FAMILY ARCHITECTURE

1. Configurable Logic Blocks

A number of architectural improvements contribute to the Xilinx Family's

increased logic density and performance levels. The most important one is a

more powerful and flexible configurable logic block (CLB) surrounded by a

versatile set of routing resources, resulting in more effective gates per CLB.

Each CLB packs a pair of flip-flops, and two independent 4-input function

generators. The two function generators offer designers plenty of flexibility,

because most of the combinatorial logic functions need less than four inputs.

Consequently, the design software tools can deal with each function generator

independently, improving the cell usage [Xilinx, XC4000 LCA family, 1990].

Thirteen CLB inputs, and four CLB outputs provide access to function

generators and flip-flops. Four inputs are available to each of the two function

generators (F1-F4 and G1-G4). These function generators, whose outputs are

labeled F' and G', are each capable of implementing any arbitrarily defined

Boolean function of their four inputs. The function generators are implemented

as memory look up tables, therefore the propagation delay is independent of the

function being implemented. A third function generator, labeled H', can

implement any Boolean function of its three inputs; F' ,G' and a third input from

outside the block (H1). Signals from the function generators can exit CLB on two

45

outputs; F' or H' can be connected to the F output, and G' or H' can be

connected to the G output, Thus, a CLB can be used to implement any two

independent functions up to four variables or one single function of five variables

or any function of four variables together with some functions of five variables, or

it can implement even some functions of up to nine variables (Figure 5.1).

Implementing wide functions in a single block reduces both the number of

required blocks and the delay in the signal path, achieving both increased

density and speed [Xilinx XC 4000 LCA family technical data book, 1990].

S Sr S S
WE D1 DO EC

G4
G3
G2
G1

WE DATÄ7N

G' FUNCTION

GENERATOR

F4
F3
F2
F1

WE DATAIN

F» FUNCTION

GENERATOR

CONFIGURATION
MEMORY BIT

Figure 5.1. CLB Function Generators Has the Ability To Be Used As
Read/Write Memory Cells.

46

The two storage elements in the CLB are edge triggered D-type flip-flops

with common clock (K) and clock enable (EC) inputs. A third common input (S/R)

can be programmed as either asynchronous set or reset signal independently for

each of the two registers; this input can be disabled for either flip-flop.

A separate global SET/RESET line (not shown in Figure 5.2) sets or clears each

register during power up, reconfiguration, or when a dedicated RESET net is

driven active. This RESET input does not compete with other routing recourses;

it can be connected to any package pin, providing a global reset input. Each flip-

flop can be triggered on either rising or falling edge of the clock. The source of a

flip-flop data input is programmable: it is driven either by functions F', G' and H\

or Direct In (DIN) block input. The flip-flops drive the Q1 and Q2 of the CLB

outputs. In addition, each CLB F' and G' function generator contains dedicated

arithmetic logic for the fast generation of the carry and borrow signals, greatly

increasing the efficiency and performance of adders, subtracters, accumulators,

comparators, and even counters. Multiplexers in the CLB map the four control

inputs, labeled C1 through C4 in Figure 5.2, into the four internal control signals

(H1, DIN, S/R, AND EC) in any arbitrary manner [Xilinx, XC4000 LCA

Family, 1994].

Delays in LCA-based designs are layout dependent. While this makes it

hard to predict a worst case guaranteed performance, there is a rule designers

should consider; the system clock rate should not exceed one third to one half of

the specified toggle rate. Critical portions of a design, shift registers and simple

47

counters, can run faster approximately two-thirds of the specified toggle rate

[Xilinx, Tech. Data XC4000 LCA family].

a £ s $
H1 DIN S/R EC

G4

G3

G2

G1

LOGIC
FUNCTION | .

OF G'i
G1-G4

LOGIC |
FUNCTION :

OF H'i-
F', G' !

AND H1 j

F4
F3

F2

F1

LOGIC
FUNCTION r

OF r

F1-F4

MULTIPLEXER
CONTROLLED

BY CONFIGURATION
PROGRAM

DIN
G"

TtrlE?-

'—Dlt^v,

K(CLOCK)

f^ 57R"
CONTi

SD
D Q-Q2

L? S/R h
CONT

3>
n

D SD~ä-Q1

EC RD_

->

Figure 5.2. Simplified Diagram of XC4000 Configurable Logic Block.

The CLB can pass the combinatorial outputs to the interconnect networks,

but can also store the combinatorial result(s) or other incoming data in one or

two flip-flops, and connect their outputs to the interconnect network as well. The

older programmable gate arrays had to make a choice, either output the

combinatorial function or the stored value. From the XC4000 FPGAs on, the flip-

48

flops can be used as registers or shift registers without blocking the function

generators from performing a different, perhaps unrelated job. This increases the

functional density of the chip [Xilinx, Tech. Data, XC4000 LCA Family, 1990].

When a function generator drives a flip-flop in a CLB, the combinatorial

propagation delay overlaps completely with the set-up time of the flip-flop. The

set-up time is specified between the function generator inputs and the clock

input. This represents a performance advantage over competing technologies

where combinatorial delays must be added to the flip-flop set-up time. Each CLB

includes high speed carry logic that can be activated by configuration. Each 4-

input function generator can be configured as a two bit adder with built in hidden

carry that can be expanded to any length. This dedicated adder circuitry is so

fast and efficient that conventional speed up methods like carry

generate/propagate are meaningless, even at the 16-bit level, and of marginal

benefit at the 32-bit level. The fast carry logic opens the door to many new

applications involving arithmetic operation, where the previous generations of

FPGAs were not fast and/or not efficient enough. High speed address offset

calculations in microprocessor or graphic systems, and high speed addition in

digital signal processing are two typical applications. As the technology

develops, the carry logic helps faster and more efficient counters. In addition,

the abundance of flip-flops in the CLBs invites pipelined designs. This is a

powerful way of increasing performance by breaking the function into smaller

subfunctions, and executing them in parallel, passing on the results through the

49

pipeline. This method should be seriously considered wherever total

performance is more important tnan simple throughput-delay [Xilinx, Tech. Data

XC4000, LCA family, 1990].

For years, FPGAs have suffered from the lack of fast and wide decoding

circuitry. When the address or the data field is wider than the function generator

inputs, FPGAs need level decoding and thus are slower than PALs. In XC3000

there are five bits, in XC4000 family CLBs, there are nine inputs; and any

decoder up to 9 inputs is, therefore compact and fast. But there is also a need

for larger decoders, especially for address decoding in large microprocessor

systems. The XC4000 family has 16 very fast programmable decoders, each

with up to 40 inputs. These dedicated decoders are located at chip periphery,

four decoders on each chip edge. They accept I/O signals and internal signals

as input and generate a decoded output in 10 ns. Each decoder AND gate can

also be split into two when a larger number of narrower decoders is required.

Very large PALs can be emulated by ORing the decoder outputs in a CLB. This

fast decoding feature covers what has been long considered a weakness of

FPGAs. Users often resorted to external PALs for simple, but fast decoding

functions. The maximum output current specification of today's FPGAs often

forces the user to add external buffers, cumbersome especially on bi-directional

I/O lines. [Xilinx, Tech. Data XC4000 LCA Family].

50

2. Abundant Routing Resources

Connections between blocks are made by metal lines with programmable

switching points and switching matrices. The globally distributed signal lines

have access to any clock or logic input. The designer of synchronous systems

can distribute several clocks, and control signals, all over the chip, without

having to worry about any clock skew. The horizontal long lines can be used as

unidirectional or bi-directional data buses, or they can implement wide

multiplexers or wired AND functions. Single-length lines connect the switching

matrices that are located at every intersection of a row and a column of CLB.

These lines provide the greatest interconnect flexibility, but cause a delay

whenever they go through a switching matrix. Double-length lines provide faster

signal routing over intermediate distances [Xilinx, Tech Data XC4000 LCA

Family, 1996].

3. On-Chip Memory

Beginning from XC4000 family LCAs, They have on-chip static memory

resources (RAM bits up to 73728 bits for XC4062XL)[Xilinx, The Prog. Logic

Data Book, 1996], further increasing the system integration level. And optional

mode for each CLB makes the memory look up tables in the F' and G' function

generators usable as either 16*2 or 32*1 bit array of read/write memory cells.

The F1-F4 and G1-G4 inputs to the function generators act as address lines,

selecting a particular memory cell in each look up table. The functionality of the

CLB control signals changes in this configuration; H1, DIN, and S/R lines

51

become the two data inputs and the Write Enable (WE) input for 16*2 memory.

When the 32*1 configuration is selected, D1 acts as the fifth address bit, and DO

as the data input. The content of the memory cell(s) being addressed are

available at the F' and G' function generator outputs, and can exit the CLB

through its F and G outputs. Configuring the CLB function generators as

read/write memory does not affect the functionality of the other portions of the

CLB, with the exception of the redefinition of the control signals. The H' function

generator can be used to implement Boolean functions of F' ,G' and D1, and D2

flip-flops can latch the F, G', H', or DO signals. The RAM bits are very fast: read

access time is the same as logic delay (for XC4000 about 5 ns) and write time is

10 ns (again for the same FPGA), both are several times faster than any off-chip

solution. Such distributed RAM is a novel concept, creating new possibilities in

system design; registered arrays of multiple accumulators, status registers,

index registers, DMA counters, distributed shift registers, LIFO stacks, and FIFO

buffers. The other important benefit of on board RAM bits is to save gates (such

as flip-flops, address line decoders, and etc.) which designer can use to

implement more other functions [Xilinx, Tech. Data XC4000 LCA family, 1990].

4. Input/Output Blocks

User-configurable I/O blocks (lOBs) provide the interface between

external package pins and the internal logic (shown in Figure 5.3). Each IOB

controls one package pin and can be defined for input, output, or bi-directional

signals. In Figure 5.3, two paths labeled H and I2 .bring input signals into the

52

array. Inputs are routed to an input register that can be programmed as either an

edge triggered flip-flop or a level sensitive transparent latch. The data input to

the register can be delayed to compensate for the delay of the clock. Output

signals can pass directly to the pad, or to be stored in an edge triggered flip-flop.

OE signal can be used to change output buffer's state to high impedance to

implement 3-state buffers or bi-directional I/O. Slew rate control signal is used to

minimize power bus transients when switching non-critical signals. The output

buffers are capable of sinking 12mA; two adjacent buffers can be wired-ANDed

SJBfJ

RATE

ONJRCL

RJU.-UP/ |

j RJU.-CCWJ |

OE

OUT [

FLIP
FLOP

'OUTPUT

BUFFER

] Vcc

W

OUTPUT

CLOCK
INPUT ■"

BUFFER

INPUT
CLOCK

IFUPFLOP/ j
■ LATCH I

Figure 5.3 Block Diagram of XC 4000 Input/Output Block.

53

externally to sink up to 24mA in order not to use buffers outside the package, in

this case it can support short buses on any card (like PC board). Programmable

pull-up and pull-down resistors are useful to connect unused pins to Vcc or

ground to minimize the power consumption. And it is compatible with IEEE

standard 1149.1 for boundary scan testing, permitting easy chip and board level

testing of LCA-based applications[Xilinx, Tech. Data XC4000 LCA Family, 1990].

5. Programmable Interconnect

All internal connections are composed of metal segments with

programmable switching points to implement the desired routing. An abundance

of different routing resources is provided to achieve efficient automated routing.

The number of routing channels is scaled to the size of the array, i.e, it

increases with array size. CLB inputs and outputs are distributed on four sides of

the block (beginning from XC4000 FPGAs), providing routing flexibility. There

are three main types of interconnect, distinguished by the relative length of their

segments: single-length lines, double-length lines, and long lines. The number of

routing channels varies with the array size. The routing scheme was designed

for minimum resistance and capacitance of the average routing path, resulting in

significant performance improvements. The single-length lines are a grid of

horizontal and vertical lines that intersect at a switch matrix between each block.

Each switch matrix consists of programmable n-channel pass transistors used to

establish connections between the single length lines. And it can be routed one

way or multiple ways depending on the branches required. Single length lines

54

are used to conduct signals within a localized area and to provide branching for

nets fanout greater than one [Xilinx, Tech. Data XC4000 LCA Family].

Double-length lines provide the most efficient implementation of

intermediate length, point to point interconnections. Long lines form a grid of

metal interconnect segments that run the entire length or width of the array.

Additional long lines in the vertical plane can be driven by special global buffers,

designed to distribute clocks and other high fanout control signals throughout

the array with minimal skew. Long lines are intended for high fanout time, critical

signal nets. Communication between long lines and single-length lines is

controlled by programmable interconnect points at the line intersection by six

pass transistors to route signal to where it is needed [Xilinx, Tech Data XC4000

LCA family, 1990]. Double length lines do not connect with other lines, and

beginning with the XC4000EX quad lines, introduce higher communication or

faster propagation capabilities.

6. Taking Advantage of Reconfiguration

All Xilinx families of LCAs can be reconfigured to change logic functions

while resident in the system. This gives the system designer a new degree of

freedom that is not available with any other type of logic. Hardware configuration

can be changed as easily as software. Design updates and modifications are

easy. An LCA device can be reconfigured dynamically to perform different

functions at different times. Reconfigurable logic can be used to implement

system self diagnostics, create system capable of being reconfigured for

55

different environments or operations, implement dual-purpose hardware for a

given application. As an added benefit, use of reconfigurable LCAs simplifies

hardware design and debugging and shortens a product's time-to-market [Xilinx,

Tech. Data XC4000 LCA Family, 1996].

7. The Xilinx Development System

The powerful hardware features of FPGA family require a powerful, easy

to use development tool, and Xilinx provides an enhanced tool: Xilinx Automated

CAE Tool (XACT). And XACT Design Manager (XDM) simplifies the selection of

command line options with pull-down menus and online documents. Design

sheet can be entered using schematic capture software or industry standard

interfaces such as EDIF. The XACT development system has interfaces with a

number of powerful design environments, and it supports more than 100

packages (like Mentor Graphics, ORCAD, FutureNet, VIEWLogic, Cadence,

Synopsys, etc.).

C. CONCLUSION

In this thesis study, the XC4003 FPGA environment is used for the

simulations of the individual modules. It is concluded that, the XC4003 gate

count is not sufficient for the MAIN_CIRCUIT design even before adding the

controller. The XC4007 or a higher XC4000 family member should be chosen to

satisfy the needs.

As a result FPGAs are used with high performance along with price

leadership for high volume applications like Plug-and-play cards, ATM

56

(Asynchronous Transfer Mode) cards, for wireless communication, CDROMs,

SATCOMs, Teleconferencing and DSP applications successfully.

57

58

VI. CONCLUSION AND RECOMMENDATIONS

In this thesis study, the golay encoder/decoder is implemented in the

Mentor Graphics schematic entry tool Design Architect. The simulations for

some individual modules are done in Quicksimll for Xilinx XC4003 FPGA

environment. The controller part of the design is to be implemented in a later

study according to the simulation results obtained in this study (as explained in

Chapter IV). After the design is completed, the migration of the coder into an

FPGA chip is to be done. It is necessary to do timing simulations of the coder

for the FPGA demo board. The FPGA that will be used to simulate the coder

should be a XC4007 or higher gate capacity chip depending on the

implementation of the controller.

During the real environment execution on the demo board, the encode

and decode ROM inputs need to be done only once at the beginning. The static

RAM bits can keep the ROM values entered. Therefore, the input/output pads

can be assigned to other I/O signals. The static RAM bits of the XILINX

architecture provided faster encoding, and decoding capability, but it took time

to understand how to include it in the design process.

For a faster schematic design of the coder, flip flops can be used at

several stages by dividing the modules into equal design partitions for

pipelining. In the XC4000 family there are a number of options that can offer

59

enough gate counts for designs requiring large number of gates for high speed

pipeline operation.

Modular design approach helped a lot in the implementation and the

debugging of the modules and layers of the design hierarchy. Moreover it

helped the understanding of the function partitions and interfaces.

For future implementation of the controller, the first approach is to define

the partitions of states independent of each other. After debugging each state

transition diagram of the partitions, they all can be put together to perform the

overall state transition diagram. By using this state table and an algorithm (such

as one-hot) the controller can be implemented. The second approach is to use

a synthesis tool (like VHDL or Verilog in one of the EDA tools) by writing the

states of the controller required in the design in high level languages. After

converting it into schematic sheet, it can be imported into the FPGA chips.

Before designing the controller and exporting the design into an FPGA

chip, it is important to study the State Machine Design Chapter in the Digital

Design Book [John F. Wakerly,1994], Xilinx XC4000 FPGA training course

manuals, and the XILINX "User Guide and Tutorials" book to save time before

facing the potential problems.

The lack of experience with the schematic capture and simulation tools is

part of the difficulty in this work. Customer services of the design programming

environment and direct support people were often not available. This problem

resulted in slow down during the thesis study.

60

APPENDIX A.

CIRCUIT SCHEMATICS

61

CO
c
CD

>

CD

a m
z
m
>

1 m z o
D m
o
O
CD
13
CD
—i
&_
m
o o
Q.
CD ^
D
CD
O
O
Q.
CD

t [

i i

^O^OfTJ-O-D-O-O-O-^-^-Q-Q

-O -o

62

3
Ü
L.

b
c
CO

o

CM
<

4&A&66& 6 44444444444 444^4444 44444 4 4444

63

31
to'
c
—%
CD

>

Z
m

m
CO

<
m

m
O
O
Q.
CD

O
Q.
C^
CD
0)

Q.

73
CD

CQ
0)'
CD —%
CO
CD

< o
ft*
CD

64

333333 333333
y y y W y y y y y y y y

iimimm

X

CO

O
CE
a>

T3
O
Ü
C

LU
c
CO

3
Q.

CD
CO
D)

o
Ü
c

LU

UJ
D
O
Ü

UJ

<
CD

3

u_

65

II ZO-

II lO-

n BO

isO

I80

no
FDC.CLRO-

F0CS_E(O-
FDC_CLIcO-

IGO-

ISO

HO

I30

I20

IlO

f dce
D 0

CE «

* CLR

fdce
0 0

CE B

>C CLR

fdce
D 0

CE «

* CLR
T"

Fdce
o
CE "

>C
CLR

fdce
D 0

CE *

>C CLR

fdce
D C

CE '

* CLR

fdce

fdce

fdce
D

CE *

CLR

fdc;
D 0

CE *

>° CLR

fdc;
D

CE

>C
 ^ I CLR

fdcj
D Or

CE :

* CLR
_T"

-Ooiz

-Oon

-Ooio

-O09

■Öd

-O07

HO OS

-O05

■Oc<

-O03

—C>02

Figure A.5. 12BIT_SHIFTREG1, 12 Bit Shift Register.

66

TO.OFF.O-

T0_DFF_3O-

TD.DFF^EO-

CLK..FINX0RO—

a£AR_FINX0CO-

srra_esC>
TQ.0FF.7O-

T0_QFF_3O-

o—3> ~* ^ xor2

0 0

o—5> ^ / xorZ

T0.DFF.12O-

H ^ xcr2

ü—5r> H ' xar?

O 3>

o—=£>

o—^

:c^-5>

Tele"

TM:

TcTc"

~rac~

~rac~

O =*>
-*——y «or?

o—=*>

I>—^P-

o—£>

Terr
0 0

•>c ,.„

T3H

TcTc

n:

T^c"

T0_FINX0R_3

T0JTNX0R--1

rO_FINXCR_5

TO.FINX0R_12

Figure A.6.RAM_X0R_T0_LAST1, Looked up Encode ROM Rows XOR Module

67

FDC.ClßO-

FOCS.ENO-
FX.CUO-

SERIAL. INPUTS"

Fdce

i-oce.
0 0

CE *

t-Qce
0 0

CE '

* CL«

face

race
0 0
CE *

>C CL5

~f ace
D 0

C£ '

* CL,

Fdce

Kjce.

face
-0

CE

Face
0 0-
CE *

tc CU

"Rice
0 0

CE •

l-ace
J

-Dü3

-Oon

-Ooio

-O09

-O03

-Ool

-OD:

■Ot!

-O01

-Ooi

Figure A.7. 12FDC_WES, 12 D-Flip-Flop with Enable.

68

Figure A.8. REGFIRST_WEN1, First Column 49 Bit Register Module.

69

iyjjict.

:;Sp

-m

pte

-s

-^= .■-)

Figure A.9. REG_VEWSEC0ND1, Second and Third Column Register Module.

70

Z.Z.RRZHX.KZ.ZIZ~ £

 ;???P595
BBRKffBBBBBBSSBBSBUBBSe

iiiiiaiiiiiiiiitiiiii 11111111111111111111 tl\
3. B = = =■

 H44f-

O

O
(ö

(D
c
d>
CD
a)
£
o
s_
T3
C
>.
CO
"O c
(0
1_

0)
o
>
>s
"l—

o
"ÖT

CM

CO
<

UJ

<
H
CO

I
Hl
Q
O
O
UJ
Q

<

CD

ySSQy
iiilll

71

Z1

CQ'

(D

>

<
O
H
m
73
CO

.5?
o' —^

<
o
CD

72

OO 1>>

oO [>f>

REC.CLR.AnNXOGl
SYSTDI.CIKO

C20D [>>

Figure A. 12.G0LAY_MAJ_W0RD_B, Received Golay Word Register.

73

Fries

Figure A.13. MAJ_WORD_B_TO_ENC, Received Message Word Register.

74

Figure A. 14. REG_FORMAJ_WORD, Register for Majority Word.

75

XOHZS.CLßO-

CEN.STNDBOM'EO-

16 IN . 2 iD V\ X_

IBIH.IZO- *£-—S

XOBIN.

X0B1H. ?£=2>

XÜSIH.22I

XOSIN.10'1 O

XORW,

xoei« _§D JLx

IIN.2QC; *ft~"V
IEIN.SO)L-^y

;0BIH.7O——?id—-/

X DE IN. IS'

XDElN.gl

XOBIN.Sl

o-

xoßiN.ie

XOBlN.4

xoam.is!
X0E]N.3:

X1B1N.

X0CIN.?l

)I>
flr2

IQBIN.I]!

XOBIN. II)E>

O-

:£>

O-

Ü-

I>

Ü-

o-

ID-

o

likL

ld£_
0 0

idc
0 0

Fdc

Fdc

Jji<L

ldc_

Fjic

Fdc
0 0

fdc
D 0

LckL_

ldc_

-Osia

-Oss

c 0! oss

Figure A. 15. XOR2S_NEW3, Syndrome Bit Generator XOR Module.

76

tutatttti
itiüiiiifi.
1*53533532325

: 5 :•:•::■:• 3 ■>*:•" J ? ■

-35

flui «3 85aSt3;SI

liii

o
T3
O

O
O

O
Q:

o
Ü

Q

LU
Z

I
CO

CD

<

CD

<
(D

Elli =
3 l

11

Edce,

Fdce

ffiCT

fflnp

^=0- ^V^

=Z>

=£>

=£>

=I>

=£>

■=£>

=C>

5 PtlCBi

I?

,»r>.

=£>

^O

=o

ridCfi,

UF*

m

:y
£üLI

Figure A. 17. SYND_LAST_CIR, Syndrome Bits Shift Module.

78

Figure A. 18. 24BIT_PAR_TO_SER, 24 Bit Massage Words Shift Module.

79

80

APPENDIX B.

SIMULATION SCHEMATICS

81

CD
C
—s
CD

DO o
a\

—1. CTi

^j

z
m
%
H m h-

CO O

H O

I ^ O

■<
3
(D m 3

z ÜL

0)
3 c

^

0) UJ

»-^
o
3

3
■a
c
r+
Cfl <T\

H O

—\
03
O
a>

iiqr
O f O |
o o
o o
o o
Q Q +
o o
o o
o o
o o
o o

o
o

+ 9

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+

+

+

+

-f

+

+

+
t

+

+

+

+

+

+

+

t
1

+

+

+

+

+

+

+

1
.—1

+

+

+

+

+

+

+

1

+

+

+

+
1

+

+

+

+

1 I

+

+

+

+

+

+

+

+

:=i

n

J r-l r-J r X

Ü
X

X

X

x

X

X

X

x

X

X

^

P>s

82

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +.

+ + + + + + + + + +

+ + + + + + + + + +

+ + •+■ + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

4- + + + + + + +. + +

+ + + + + + + + + +

+ + + + + + + + + +

+ * + + + + + + + ■*:

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

O
o
o
+ + + + + + + + + *

r J ♦

X X

X X

CO

x:

■^r o
CÜ o
C) o
OJ
en cb
t) o
r- o
ui o

w o
CO o

l*~u 1 o i
X

X

X

X

O
(0
H
<C
1c
CO
CO

a>
to

a:
z
LU
v,
H
CO
LU
1-
£
LU

CM
DO
<D

LL

X

— cr\

83

(Q
C
—t

CD

DO
CO

z
m
%
-\
m
GO
H

'■<

m
z
73
CD

(Q
<fl'
CD
—t

c/>

CO
3"

rn
Q.

03
O
CD

^

X

X

X

X

2 X

I -

+

84

0 .0 *1 *0r *Xr «XXXXXXXXXXXXXr
0 .1 1 Or Xr XXXXXXXXXXXXXr
0 .2 1 Or Xr XXXXXXXXXXXXXr

100 .0 *0 *1 *0 *0000000000000
200 0 *1 *0 0 0000000000000
300 0 *0 0 0 0000000000000
400 0 *1 0 0 0000000000000
500 0 *0 0 0 0000000000000
600 0 *1 0 0 0000000000000
700 0 *0 0 0 0000000000000
800 0 *1 0 0 0000000000000
900 0 *0 0 0 0000000000000

1000 0 *1 0 0 0000000000000
1100 0 *0 0 0 0000000000000
1200 0 *1 0 0 0000000000000
1300 0 *0 0 0 0000000000000
1400 0 *1 0 0 0000000000000
1500 0 *0 0 0 0000000000000
1600 0 *1 0 0 0000000000000
1700 0 *0 0 0 0000000000000
1800 0 *1 0 0 0000000000000
1900 0 *0 0 0 0000000000000
2000 0 *1 0 0 0000000000000
2100 0 *0 0 0 0000000000000
2200 0 *1 0 0 0000000000000
2300 0 *0 0 0 0000000000000
2400 0 *1 0 0 0000000000000
2500 0 *0 0 0 0000000000000
2600 0 *1 0 0 0000000000000
2700 0 *0 0 0 0000000000000
2800 0 *1 0 0 0000000000000
2900 0 *0 0 0 0000000000000
3000 0 *1 0 0 0000000000000
3100 0 *0 0 0 0000000000000
3200 0 *1 0 0 0000000000000
3300 0 *0 0 0 0000000000000
3400 0 *1 0 0 0000000000000
3500 0 *0 0 0 0000000000000
3600 0 *1 0 0 0000000000000
3700 0 *0 0 0 0000000000000
3800 0 *1 0 *1 *1EBC98234570A
3800 3 1 0 1 1EBC98234570A
3900 0 *0 0 1 1EBC98234570A
4000 0 *] 0 *0 *0000000000000
4100 0 *0 0 0 ooooooooooooc
4200 0 *1 0 0 0000000000000
4200 1 1 0 0 ooooooooooooc
4300 0 *0 0 0 ooooooooooooc
4400 0 *1 0 0 ooooooooooooc
ime(ns) ~/SYSTEM_CLK

"/MAJ_CLR

"/MAJ_VOTE_EN
'/SUS_A(1:49)

'XXXXXXXXXXXXXr
XXXXXXXXXXXXXr
XXXXXXXXXXXXXr
'0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
'1A2345983CDEA
1A234598BCDEA
1A2345983CDEA
•0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
ooooooooooooc
"/BUS_B(1:49)

*XXXXXXXXXXXXXr
XXXXXXXXXXXXXr
XXXXXXXXXXXXXr
'0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
ooooooooooooo
0000000000000
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
•189DCA3EF5870
189DCA3EF5870
189DCA3EF5870
•ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
~ / BUS_C (1 : 4 9)

Figure B.4. DECODE_STAGE_LAST2 Simulation Inputs List.

85

/KY.STEH CI-K

/MAJ._(71.H
~i_rL_j-'t_ri_j-Lj-LJ -■Lx-i_ri_j-i_j^j-i_rT_r-Lj -L -~L

/KAJ_V<'TE„EN

'ÜUi-M''V" -O300000COO000

'Uu"'JJ"'''1 «OOOOOCOOMOOO

COOOCCOOOOOUO

; KCCi.R_!^YNT!_XOR

/ENCOIJING.DCNE

S!i I FT_ I NTO_ENCS

/SlilFTAFMAJ.EN1

000

OOOQCO

■*>"-"'-',-1-""":1" -ooo X"5 X,9r X~B X=" X»J X=Ei X-cc Xim X3t» X'»- X»'D X"» X000

•
«0 t 1 r i I ! 1 t t 1 1 i i

/A2

/Aj

/CEN_SYNDROME

/S2«l

/S23

/S22

1 /Ü20

/S19

/S13

i • 1 • I • i • t • 1 • !
1 -•■•}... 1 . ■

.

.

.
/S17

/S1&

/Slrj

/SI«

/S13

/S12

/Sll

/S10

/S9

/SB

/S7

/S6

/S5

/S«l

/S3

/S2

/SI

.

.

.

.

.

.

.

.

<-0L_U_PU5113:2/O •ooo

COL_A_nuS(li12) ooo

*AJ_»J!US1U:24J ooo

MAJ._A_ttUSU : 12) ooo

Figure B.5. DEC0DE_STAGE_LAST2 Encode ROM Trace.

86

/SYSTEM_CLK ^rLRnTuu"^umju~LrmjuTJ

0000000600000

ZKAJ_Cl.ll „

/KAJ_VOTE„EN ' .

/BUS_A{1:49» QoooooooooQOQ

/8U5_B(1:49J 0000000000000

ZBUS_C(1:<9)

ECCLR_ASYND_XOR

/ENCODINC_DONE

SKIFT_INTO_ENCS \

/SHIFTAFMAJ_EN

0TED_W0RD!1:12) "^ ',

OTED_WORD(2J:l) " g5Y0p~

DE_RAM_IN(0:11)
000

/WE

/C~N_SyNDROME

/S2A

/S21

ZS22

/S21

/S20

/S19

ZS1B

/sn

/sie

/SIS

/sit

/S13

/S12

/sn

/sio

/S9

/SI

OL_B_BUS(13:24>

COL_A_BUSU: 12)

AJ_B_BUS{I3;24!

y^.7_A_BUSn : 12)

n

Figure B.6. DECODE_STAGE_LAST2 Syndrome Bits Trace.

87

CD
C —*
CD

GO

>

I
ro
H
U)

i z
m

a
CD o o
Q.
0

o

o
CD

c o ;n o 'i
30 t m i -9
o x in n i in m w

— ;s

f r

X

X

X

X

"l *i r t f f f r r t t t t t
i

i t v t v ; ; ; t t ; ;

t t r r f t t r r r t

i^V-^i-4-4-^V4-4-

r r f r f T r r r r r

4-4-4-Vi-4-+-4-t.^ +

X

X

X

X^

X

^-^■*f^-t•^-^-^-^4-4-

r t r r f I

f + fi-t-f + »-»-V

J-ft»-*-4-4-4-tt-4-

r r t

i
i

+ »■ f
i
i
i
i

f f

f f

•- t t- > ^ t- t
I I !

88

+ + + + + + + + + + +

+ + + +■ + + + + + + +

■*■ + + + + + + + + + +

+ + + + + + + + 4 + +

+ + + + + + + + + + *■

+ * + •* + + + + + + +

X

r^

CD
Ü
CO

H

Ü
0
L—
U
o
O
o
c
cu

LU
w
m
CO
CO

LU
Z

I
CO
H
CD

<

CO

CO

CD

3

— Eu

89

90

LIST OF REFERENCES

John F. Wakerley, Digital Design Principles & Practices, Prentice-Hall, Inc.
Englewood Cliffs, New Jersey, 1994.

Mentor Graphics Inc., Idea Station, Personal Learning Program, 1989.

Proakis John G., Digital Communication, Mc Graw Hill, Inc, New York, NY, 1989.

Shu Lin, Daniel J. Costello, Error Control Coding: Fundamentals and
Applications, Prentice Hall, Inc, Englewood Cliffs, New Jersey, 1983.

Snelgrove, Andrew H., "The Design of Programmable Convolutional Encoder
Using VHDL and an FPGA," December 1994.

William Stalling, Data and Computer Communications, McMillan Publishing
Company, New York, NY, 1994.

XI LI NX, Inc, XC3000and XC4000 Family Programmable Gate Array Training
Course Day1, Day2, Day3, Day4, San Jose, CA, 1995.

XILINX, Inc, Programmable Logic Breakthrough'95, San Jose, CA, 1995.

XILINIX, Inc, The Programmable Logic Data Book, San Jose, CA, 1994.

XILINX, Inc, User Guide and Tutorials, San Jose, CA, 1991.

XILINX, Inc., XACTLibraries Guide, San Jose, CA, 1994.

XILINXJnc, XACT MENTOR Version & Interface User Guide, San Jose, CA,
1994.

91

92

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

2

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

1

4. Professor Chin-Hwa Lee, Code EC/Le
Department of Electrical and Computer
Naval Postgraduate School
Monterey, CA 93943-5121

Engineering
1

5. Professor Todd Weatherford, Code EC/We
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

1

6. Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar, Ankara, Turkey

2

7. Deniz Harp Okulu Komutligi
Tuzla, Istanbul, Turkey 81704

1

8. Mehmet Sari
Dz.Utgm.
Deniz Kuvvetleri Komutanligi
Muhabere Ein. Bsk.'ligi
Sahil Sistemleri Gelistirme Proje Sb.
Bakanliklar, Ankara, Turkey

1

93

9. Istanbul Teknik Üniversitesi
Universite Kütüphanesi
Maslak, Istanbul, Turkey

10 Orta Dogu Teknik Üniversitesi
Universite Kutuphanesi
Balgat, Ankara, Turkey

11. Golcuk Tersanesi Komutanligi
APGE Baskanligi
Golcuk, Kocaeli, Turkey

12. Bogazici Üniversitesi
Universite Kutuphanesi
Bebek, Istanbul, Turkey

94

